Convenient formulae for some integrals in perturbation theory

نویسنده

  • D. Henderson
چکیده

The free energy and pressure of a fluid, as given by perturbation theory, involve integrals of the hard sphere correlation functions and their density derivatives. In most applications a straightforward procedure would be to obtain these integrals, possibly numerically, using the formulae and computer codes for the hard sphere correlation functions, given previously [Mol. Phys., 2007, 106, 2; Condens. Matter Phys., 2009, 12, 127], followed by numerical differentiation with respect to the density and a possible compounding of errors. More sophisticated methods are given in this paper, which is the second in a planned trilogy, drawn from the author’s lecture notes. Three representative model fluids are considered. They are the square-well fluid, the Yukawa fluid, and the Lennard-Jones fluid. Each model fluid is popular for theoretical and engineering calculations and can represent a simple fluid such as argon. With the methods presented here, numerical integration and differentiation are not necessary for the square-well and Yukawa fluids. Numerical integration cannot be easily avoided in the case of the Lennard-Jones fluid. However, numerical differentiation with respect to the density is not required.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Transforms with the Homotopy Perturbation Method and Some Applications

Approximation theory covers some important topics in applied analysis, and its application serves many fields in science and engineering such as fluid mechanics, electromagnetism, diffraction theory, statistics and economics. Although it is an old subject, dating back to Laplace, new methods and applications continue to appear in various publications. There is now a need to provide new methods ...

متن کامل

Perturbative quantum field theory and Feynman diagrams 1.1 A calculus exercise in Feynman integrals To understand the role of Feynman graphs in perturbative quantum field

World Scientific Book-9in x 6in FeynmanMotivesBook Chapter 1 Perturbative quantum field theory and Feynman diagrams 1.1 A calculus exercise in Feynman integrals To understand the role of Feynman graphs in perturbative quantum field theory, it is convenient to first see how graphs arise in the more familiar setting of finite dimensional integrals, as a convenient way of parameterizing the terms ...

متن کامل

Computation of Weakly and Nearly Singular Integrals over Triangles in R3

We study the approximation of weakly singular integrals over triangles in general position in R3, giving explicit formulae where convenient and numerical quadrature in more general cases. Particular models considered concern the collocation and Galerkin methods in the boundary integral approach to the Dirichlet problem for Laplace’s equation.

متن کامل

Application of He’s homotopy perturbation method for Schrodinger equation

In this paper, He’s homotopy perturbation method is applied to solve linear Schrodinger equation. The method yields solutions in convergent series forms with easily computable terms. The result show that these method is very convenient and can be applied to large class of problems. Some numerical examples are given to effectiveness of the method.

متن کامل

Path integrals and boundary conditions

The path integral approach to quantum mechanics provides a method of quantization of dynamical systems directly from the Lagrange formalism. In field theory the method presents some advantages over Hamiltonian quantization. The Lagrange formalism preserves relativistic covariance which makes the Feynman method very convenient to achieve the renormalization of field theories both in perturbative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010